# Lecture 3: Energy Band and Semiconductor Materials

Energy band diagram is made of the 0 2 4 6 highest energy bands of interest in considering electrical properties. The Band 8 10 uppermost energy band is the - 12 conduction band (electrons moving Semiconductor energy and partition freely once they are there). The middle band is the *forbidden band* in which no electrons occupy the band. The third band is the *valence band* that has the electron ready to be mobilized but yet need the energy to move. Silicone energy band

> LECTURE 3 - ELFT 563 LCVJ 2003-2004

Conduction Band

Valence Band

1

1ev]















## Fermi Function

- The Fermi-Dirac distribution function provides the probability of occupancy of energy levels by Fermions. Fermions are half-integer spin particles, which obey the Pauli exclusion principle. The Pauli exclusion principle postulates that only one Fermion can occupy a single quantum state.
- Fermi function provides the probability that energy level at energy, *E*, in thermal equilibrium with a large system, is occupied by an electron. Its temperature, T, and its Fermi energy, E<sub>F</sub>, characterize the system.







# Electron and Hole Concentrations at Equilibrium

• At equilibrium conditions, the concentration of electrons (number of electrons per unit volume) in the conduction band is the product of the density of states N(E) and the probability of occupancy *f*(E) and mathematically is given by

$$n_o = \int_{E_c}^{\infty} f(E) N(E) dE$$

where, f(E)N(E) is the density of states (cm<sup>-3</sup>) in the energy range dE. The subscript O used to denote equilibrium conditions.

13

LECTURE 3 - ELFT 563 LCVJ 2003-2004

• For intrinsic material very few electrons occupy energy states far above the conduction band edge Ec. the probability of finding (hole) in the valence band  $\{1-f(E)\}$ decreases rapidly below Ev. Using the effective density of states Nc to represent the all distributed electrons states in the conduction band, the concentration of electrons can be expressed as  $n_o = N_c f(E_c)$  $f(E) = \frac{1}{1 + e^{(E - E_F)/kT}} = e^{-(E_o - E_F)/kT}$ where So, the concentration is  $n_o \cong N_c e^{-(E_o - E_F)/kT}$ where  $N_{c} = 2\left(\frac{2\pi m *_{n} kT}{h^{2}}\right)^{3/2}$ here  $m_n^*$  is the density-of –state effective mass for electrons. Note that the electron concentration increases as  $E_F$  moves closer to the conduction LECTURE 3 - ELFT 563 14 LCVJ 2003-2004

• By similar arrangements, the concentration of holes in the valence band is  

$$p_o = N_v [1 - f(E_v)] \qquad p_o = N_v e^{-(E_F - E_V)/kT}$$
and  

$$N_v = 2\left(\frac{2\pi m *_p kT}{h^2}\right)^{3/2}$$
• The electron and hole concentration predicted above are valid whether the material is intrinsic or doped, provided thermal equilibrium is maintained. Thus for intrinsic material, E<sub>F</sub> lies at the some intrinsic level E<sub>i</sub> near the middle of the band gap and the intrinsic electron and hole concentrations are  

$$n_i = N_c e^{-(E_c - E_i)/kT} \qquad p_i = N_v e^{-(E_i - E_V)/kT}$$

LECTURE 3 - ELFT 563 LCVJ 2003-2004 15

• The product of electron and holes concentration at equilibrium is constant for a particular material and temperature, even if the doping is varied:

$$n_o p_o = N_c N_v e^{-E_g/kT} = n_i p_i$$

• This yield that the intrinsic concentration is

$$n_i = \sqrt{N_c N_v} e^{-E_g/kT}$$

so practically  $n_o p_o = n_i^2$ 

LECTURE 3 - ELFT 563 LCVJ 2003-2004



$$n_o = n_i e^{-(E_F - E_i)/kT}$$
  $p_o = n_i e^{-(E_i - E_F)/kT}$ 

• This form of the above equations indicates that the electron concentration is  $n_i$  when  $E_F$  is at the intrinsic level  $E_i$  and that  $n_o$  increases exotically as the Fermi level moves away from Ei towards the conduction band. Similarly, the hole concentration  $p_o$  varies from  $n_i$  to larger values as  $E_F$  moves from  $E_i$  towards the valence band.

LECTURE 3 - ELFT 563 LCVJ 2003-2004





Also  $\mu e = ve/E$  and  $\mu h = vh/E$  and as ni = pi for pure semiconductor, then  $I = n_i q (v_e + v_h) A = n_i q (\mu_e + \mu_h) AE$   $I = n_i q (\mu_e + \mu_h) AV / L$ So the resistance is,  $\frac{V}{I} = \frac{L}{A} \frac{1}{n_i q (\mu_e + \mu_h)} = \rho \frac{L}{A}$ where,  $\rho$  is the resistively of the semiconductor in ohm-m The electrical conductivity of the semiconductor is the reciprocal of resistivity and is given by  $\sigma_i = n_i q (\mu_e + \mu_h) E = \sigma_i E$ From which the conductivity depends on two factors: *i*-Number of current carriers present per unit volume, and *ii*- The mobility of the current carriers LECTURE 3 - ELFT 563 20

LCVJ 2003-2004

#### Conductivity of Extrinsic Semiconductor

• N-type semiconductors, the current density is

 $J_n = q(n_n \mu_e + p_n \mu_h)E$ 

where,  $n_n$  and  $p_n$  represent the electron and hole densities in the N-type semiconductors after doping. The conductivity is given by

$$\sigma_n = J / E = q(n_n \mu_e + p_n \mu_h)$$

• As the electrons are a majority carrier, the conductivity could be approximated

$$\sigma_n = q n_n \mu_e$$

LECTURE 3 - ELFT 563 LCVJ 2003-2004 21

• P-type semiconductors, the current density is

$$J_p = q(n_p \mu_e + p_p \mu_h)E$$

where,  $n_p$  and  $p_p$  represent the electron and hole densities in the N-type semiconductors after doping. The conductivity is given by

$$\sigma_p = q(n_p \mu_e + p_p \mu_h)$$

• As the holes are a majority carrier, the conductivity could be approximated

 $\sigma_p = qn_p \mu_h$ 

LECTURE 3 - ELFT 563 LCVJ 2003-2004



LECTURE 3 - ELFT 563 LCVJ 2003-2004



### **Diffusion of Carriers**

- It is a force-free process based on non-uniform distribution of charge carriers in a semiconductor crystal. It is gradual floe of charge from a region of high density to a region of low density. This flow of *diffusion of carriers* is proportional to the carrier density gradient, the constant of proportionality being called diffusion constant or diffusion coefficient D that has a unit of m<sup>2</sup>/s.
- The total diffusion current density is made of two components

(iii) A current density due to electron diffusion Je = qDe dn/dx

(iv) A current density due to holes diffusion Jh = qDh dp/dx

LECTURE 3 - ELFT 563 LCVJ 2003-2004 25

Combined Drift and Diffusion of Currents  $J_{e} = q\mu_{e} nE + qD_{e} dn/dx \qquad J_{h} = q\mu_{h} pE - qD_{h} dp/dx$ • Relation between D and  $\mu$ Both diffusion constant and mobility are statically thermodynamic phenomena and are related to each other  $\mu_{e} = \frac{q}{kT} D_{e} \qquad \text{and} \qquad \mu_{h} = \frac{q}{kT} D_{h}$ or  $\frac{D_{e}}{\mu_{e}} = \frac{D_{h}}{\mu_{h}} = \frac{kT}{q} = \frac{T}{11600}$ This relation is known as **Einstein's equation**.

| Property                  | Unit             | Si                      | Ge                      | GaAs                   |
|---------------------------|------------------|-------------------------|-------------------------|------------------------|
| Density of Atoms          | cm ⁻³            | 5 x 10 <sup>22</sup>    | 4.4 x 10 <sup>22</sup>  | 2.2 x 10 <sup>22</sup> |
| Energy Gap                | eV               | 1.12                    | 0.66                    | 1.42                   |
| Effective mass            |                  |                         |                         |                        |
| electron                  |                  | 1.182                   | 0.553                   | 0.0655                 |
| hole                      |                  | 0.81                    | 0.357                   | 0.524                  |
| Effective Density State   | cm ⁻³            |                         |                         |                        |
| conduction band           |                  | 3.22 x 10 <sup>19</sup> | 1.03 x 10 <sup>19</sup> | 4.21 x 10 <sup>1</sup> |
| valence band              |                  | 1.83 x 10 <sup>19</sup> | 5.35 x 10 <sup>18</sup> | 9.52 x 10 <sup>1</sup> |
| Intrinsic Carrier Density | cm <sup>-3</sup> | 1 x 10 <sup>10</sup>    | 2.17 x 10 <sup>13</sup> | 2.49 x 10 <sup>6</sup> |
| Mobility at low doping    | cm⁻³/(V-s)       |                         |                         |                        |
| electron                  |                  | 1350                    | 3900                    | 8800                   |
| hole                      |                  | 480                     | 1900                    | 400                    |
| Breakdown Field           | V/cm             | 3 x 10 <sup>5</sup>     | 10 <sup>5</sup>         | 4 x 10 <sup>5</sup>    |
| Relative Permittivity     |                  | 11.8                    | 15.8                    | 13.1                   |
| Melting Point             | °C               | 1410                    | 940                     | 1240                   |
|                           | 27               |                         |                         |                        |

| Quantity                          | Symbol    | Value                           |
|-----------------------------------|-----------|---------------------------------|
| Boltzmann Constant                | k         | 1.38066 x 10 <sup>-23</sup> J/K |
| Boltzmann Constant                | k/q       | 8.61738 x 10 <sup>-5</sup> eV/K |
| Magnitude of Electronic<br>Charge | q         | 1.602 x 10 <sup>-19</sup> C     |
| Electronvolt                      | eV        | 1.602 x 10 <sup>-19</sup> J     |
| Permittivity of Vacuum            | ٥3        | 8.854 x 10 <sup>-12</sup> F/m   |
| Planck's Constant                 | h         | 6.626 x 10 <sup>-34</sup> J-s   |
| Thermal Voltage                   | Vt = kT/q | 0.02586 (T=300K)                |

| <b>Band Gap Variation with Temperature</b>            |          |                    |                       |     |  |  |  |  |  |
|-------------------------------------------------------|----------|--------------------|-----------------------|-----|--|--|--|--|--|
| $E_g(T) = E_g(0) - \frac{T^2 \alpha}{(T+\beta)} (eV)$ |          |                    |                       |     |  |  |  |  |  |
|                                                       | Material | E <sub>g</sub> (0) | α(10 <sup>- 4</sup> ) | β   |  |  |  |  |  |
|                                                       | GaAs     | 1.519              | 5.405                 | 204 |  |  |  |  |  |
|                                                       | Si       | 1.17               | 4.73                  | 636 |  |  |  |  |  |
|                                                       | Ge       | 0.7437             | 4.774                 | 235 |  |  |  |  |  |
|                                                       |          |                    |                       |     |  |  |  |  |  |
|                                                       |          | :                  | 29                    |     |  |  |  |  |  |

